B Physics at the Tevatron Recent Results and Future Prospects

Joseph Kroll University of Pennsylvania

Aspen Winter Conference on Particle Physics 20 January 2000

What This Talk Covers

Selected Results from Tevatron Run I

- August 1992 to February 1996
- CDF and D0 collected 100 pb^{-1} of data

Expected B Physics in Run II

- Begins in April 2001
- Initial Integrated $\mathcal{L} = 2 \text{ fb}^{-1}$ Expected in 2 years
- e.g., $10^{11} b\bar{b}$ per year

Beyond Run II (if time permits)

• Possible dedicated B physics exp. (BTeV)

Future Analysis in *B* **Physics**

Goal of B physics in next decade:

Next test of Unitarity may be a combination of:

- 1. $\sin(2\beta)$ from $B^0/\bar{B}^0 \to J/\psi K^0_{
 m S}$
- 2. $|V_{\rm td}/\lambda V_{\rm ts}|$ from $B^0-ar{B}^0$ and $B^0_s-ar{B}^0_s$ flavor oscillations

Unique capability to do both at Had. Coll.

Features crucial for B Physics

• Silicon Microstrip Detector (lifetimes) Impact parameter: $\sigma_{d_0} = (13 + 40/p_T) \, \mu \text{m}$

• Central Tracking Chamber (mass resolution) B Field = 1.4 Tesla; Radius r = 1.4 m $(\delta p_T/p_T)^2 = (0.0066)^2 \oplus (0.0009 p_T)^2$

• Lepton Detection: $(b \rightarrow \ell, J/\psi \rightarrow \mu^+\mu^-)$ Central $e: |\eta| < 1$ Central $\mu: |\eta| < 1.0$; Forward $\mu: 2.0 < |\eta| < 2.6$

The Run I D0 Detector

B Physics at Hadron Colliders

Strong interaction produces b quarks

Examples of lowest order (α_s^2) production:

produces $b\bar{b}$ pairs close in y

Quarks fragment into hadrons

 $ar{B}^0~(bar{d}),\,ar{B}^0_s~(bar{s}),\,ar{B}^-~(bar{u}),\,\Lambda_b~(bdu),\,B^-_c~(bar{c})$

also B^* , B^{**} etc.

J. Kroll

Lowest lying states decay via weak interaction

Studies of these decays leads to information on $V_{
m cb}, \, V_{
m ub}, \, V_{
m tb}, \, V_{
m ts}, \, V_{
m td}$

 \implies tests the EW Theory

Why at a Hadron Collider?

$$\Upsilon(4S): \sigma(B\bar{B}) \sim 1 \text{ nb } (\bar{B}^0 \text{ and } B^- \text{ only})$$

 $Z^0: \sigma(b\bar{b}) \sim 7 \text{ nb}$
 $p\bar{p}: \sigma(p\bar{p} \rightarrow b\bar{b}X) \sim 100 \ \mu \text{b}$
(at $\sqrt{s} = 1.8 \text{ TeV}$)

BUT inelastic cross-section 10^3 larger \implies requires specialized triggers

Run I

- Inclusive lepton $(\ell = e, \mu)$ triggers $b \to \ell
 u c X$ or $b \to c X, c \to \ell
 u Y$ $\langle p_T(B) \rangle \approx 20 \, {
 m GeV}/c$
- Dilepton $(\mu e, \mu \mu)$ triggers

$$egin{aligned} b & o J/\psi X, \psi o \mu^+\mu^- \ b & o \mu^- X, ar b o e^+ Y \ \langle p_T(B)
angle pprox 10 \, {
m GeV}/c \end{aligned}$$

Run II

• Trigger on displaced tracks (exploit $\tau(B)$) All hadronic B trigger possible $e.g., B^0/\bar{B}^0 \to \pi^+\pi^-, B_s^0 \to D_s^-\pi^+$

B Meson Cross Section

"Useful" b meson cross section

J. Kroll

B Physics is Two Subjects

1. The Study of Weak Decays

 \implies The emphasis of this talk

Run II: $\bar{B}_s^0 \Lambda_b B_c^-$ unique

2. Quantitative Study of QCD

- $m_b \gg \Lambda_{\text{QCD}} \Longrightarrow$ inclusive production calculable with Perturbation Theory.
- Probe gluon structure func: $gg \to b\overline{b}$.
- At Tevatron NLO (α_s^3) corrections as large as L0 (α_s^2)
- unique to hadron colliders (like $\Gamma_{b\bar{b}}$ on Z^0)

Not covered in this talk

Run I B Physics Results: Highlights

- Precise mass measurements of \bar{B}^0_s and Λ_b
- Precise inclusive and species specific B lifetime measurements
- Neutral B meson flavor oscillations Precise measurement of Δm_d lower limit on Δm_s developed b flavor tags
- Search for rare/forbidden B decays FCNC: $e.g., \bar{B}^0, \bar{B}^0_s \to \mu^+\mu^-, B^- \to \mu^+\mu^-K^-$ Lepton number violation: $\bar{B}^0, \bar{B}^0_s \to \mu^\pm e^\mp$
- Polarization in $\bar{B}^0 \to J/\psi \bar{K}^{*0}$ $B^0_s/\bar{B}^0_s \to J/\psi \phi$
- Discovery of B_c^- from $B_c^- o J/\psi \ell X, \ell = e, \mu$
- First measurement of $\sin(2eta)$ from $B^0/ar{B}^0 o J/\psi K^0_{
 m S}$

Run I B Physics Results (cont.)

- incl. diff. cross sections (b and B) at $\sqrt{s} = 630 \& 1800 \,\text{GeV}$
- correlated $b\overline{b}$ production (φ and y)
- Relative production rates $(f_u, f_d, f_s, f_{ ext{baryon}})$
- Precise relative branching fractions
- Studies of prompt and non-prompt $J/\psi, \psi(2S)$ production including polarization
- $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S)$ production
- $\chi_c(1P), \chi_c(2P), \chi_b$ production

In total: over 40 publications submitted or published

B Hadron Lifetimes

Three types of measurements

1. Inclusive: $b \to J/\psi X$

largest statistics: $\sim 11\,000 \ b \rightarrow J/\psi X$

not species specific \implies does not test models

2. Species specific: partially reconstructed

 $ar{B}^0$ $B^ ar{B}^0_s$ Λ_b B^-_c

Examples: $\bar{B}^0 \to \ell^- \bar{\nu}_\ell D^{(*)+}, B^- \to \ell^- \bar{\nu}_\ell D^0$

good statistics: 200 to 6000 depending on channel cross contamination (signature ambiguities)

3. Species specific: fully reconstructed $ar{B}^0 \ B^- \ ar{B}^0_s$

Examples: $B^- \to J/\psi K^-, \bar{B}^0_s \to J/\psi \phi$

lowest statistics: 60 to 500 depending on channel

BUT cleanest recontruction and signal

Run II: Test Models to 1%

$B_s^0 o D_s^- \ell^+ u_\ell X$: $au(B_s^0)$ and $\Delta \Gamma_s / \Gamma_s$

All Published

Neutral B Meson Flavor Oscillations

The oscillation frequency Δm_q is given by

$$\Delta m_q = rac{G_{
m F}^2}{6\pi} m_B m_t^2 F(rac{m_t^2}{m_W^2}) \eta_{
m QCD} B f_B^2 |V_{
m tb}^* V_{
m tq}|^2$$

Since $V_{
m ts} \gg V_{
m td}, \, B^0_s \, {
m oscillates} \, {
m faster} \, {
m than} \, B^0_d$

Measuring B Flavor Oscillations

To measure Δm

I. Time integrated measurement

$$\chi = rac{x^2}{2(1+x^2)}, x = rac{\Delta m}{\Gamma} = \Delta m \cdot au$$

measure χ , determine Δm as $\Delta m \to \infty, \chi \to \frac{1}{2}$

II. Measure proper time dependence

Produce B^0 , measure probability $\mathcal{P}(B^0 \to \overline{B}^0)$ as a function of proper decay time t

Requires

J. Kroll

- 1. Flavor of B at production often use other \overline{B} for this Crucial for CP Asymmetries
- 2. Flavor of B at decay (e.g., Lepton charge in $B \to \ell X$)
- 3. Proper decay time t of B

Methods of b Flavor Tagging

1. Opposite-side flavor tags (OST) Identify flavor of other B in event infer flavor of B decay of interest

• lepton tag: $b \to \ell^- X$, but $\overline{b} \to \ell^+ X$

$$ullet ext{ jet-charge tag: } Q^b_{ ext{jet}} < 0, ext{ but } Q^{ar{b}}_{ ext{jet}} > 0$$

• ~ 40% acceptance of other *B*

2. Same-side flavor tag (SST) Exploit correlation:

b-flavor and fragmentation particle charge (also B^{**})

i.e., π^+ tags a B^0 and π^- tags a \bar{B}^0

Better acceptance (efficiency) than OST

Measuring Oscillation Frequency Δm

Classify decays as:

"Unmixed": same b Flavor at birth and decay "Mixed": opposite b Flavor at birth and decay

Examine variation with proper decay time t:

$$\mathcal{A}(t) = rac{N_{ ext{unmixed}}(t) - N_{ ext{mixed}}(t)}{N_{ ext{unmixed}}(t) + N_{ ext{mixed}}(t)} = D \cdot \cos(\Delta m t)$$

Flavor tag Dilution: $D = 2 \cdot \mathcal{P} - 1$ (\mathcal{P} = probability flavor tag is correct)

Proper time reconstruction:

$$t=m(B)\cdot rac{L}{p}$$

Uncertainty δt on t:

$$(\delta t)^2 = \left(rac{m(B)}{p}\delta L
ight)^2 \oplus \left(oldsymbol{t}\cdotrac{\delta p}{p}
ight)^2$$

J. Kroll

Data Samples for Δm_d at CDF

Triggers (incl. ℓ , dilepton) dictate approaches

In some cases (†) trigger on flavor tag (lepton)

Other cases tag unbiased by trigger \implies most useful for studying tags for CP violation

However, Run II trigger strategy for CP may include triggering on lepton tags

Channel	B Decay Point	Flavor Tag
Inclusive lepton	Associate ℓ to	Jet-Charge
$\ell = e { m or} \mu$	secondary vertex	$\mathbf{soft} extsf{-lepton}$
Dilepton	Associate ℓ to	other
$e\mu,\mu\mu$	secondary vertex	lepton (†)
lepton vs. fully	D^* or D^-	trigger
Recons. D	decay point	lepton (†)
Partially recons.	lepton + D	same-side
$B ightarrow \ell D X$	decay point	pion tag
lepton versus	lepton + D	other
$\ell + D$	decay point	lepton (†)
Fully recons.	B decay point	any of
$B ightarrow J/\psi K$		above

Example: SST and $\bar{B}^0 \to \ell^- D^{(*)+} X$

CDF Collaboration, F. Abe *et. al.*, Phys. Rev. Lett. **80**, 2057 (1998) and Phys. Rev. D **59**, 032001 (1999).

Measure efficiency ϵ and dilution D of tag: Find $\epsilon D^2 = (2.4 \pm 0.7^{+0.6}_{-0.4})\%$ for B^0

$$\delta \mathcal{A} = \sqrt{\frac{1 - D^2 \mathcal{A}^2}{\epsilon D^2 N}}$$

J. Kroll

CDF B Mixing Results

pub. = published; sub. = submitted; prel. = preliminary

Limit: $\Delta m_s > 5.8 \text{ ps}^{-1}$ at 95% C. L.(ℓ vs. $\ell \phi$) (F. Abe *et al.*, Phys. Rev. Lett. 82 (1999) 3576.)

CP Violation in B Decays

Cleanest measurements use

 $B^0/\bar{B}^0 \to F$, where $CP|F\rangle = \pm |F\rangle$

CP Violation induced by mixing

 $V_{\rm td}$ puts complex phase in Weak Amplitude

Golden Mode: $B^0/\bar{B}^0 o J/\psi \, K^0_{
m S}$

CLEAN: Asymmetry directly related to $\sin 2\beta$

 $\mathcal{A}_{CP} = \frac{N(\bar{B}^0 \to J/\psi \, K_{\rm S}^0) - N(B^0 \to J/\psi \, K_{\rm S}^0)}{N(\bar{B}^0 \to J/\psi \, K_{\rm S}^0) + N(B^0 \to J/\psi \, K_{\rm S}^0)}$

UNLIKE $\Upsilon(4S)$ time integrated \mathcal{A}_{CP} nonvanishing at hadron collider

 $\mathcal{A}_{CP} = \frac{x_d}{1 + x_d^2} \sin 2\beta \approx 0.5 \sin 2\beta$

Lucky! $x_d = 0.732 \pm 0.032 \text{ (PDG98)}$

BUT better to measure proper time dependence of $\mathcal{A}_{CP}(t)$

 $\mathcal{A}_{CP}(t) = \sin 2\beta \sin(\Delta m_d t)$

- More statistical power Signal at small t dilutes \mathcal{A}_{CP}
- Decreases effect of background t Most combinatoric background at small t

Overview of Analysis (1)

Measure asymmetry $\mathcal{A}_{CP}(t)$:

$$egin{aligned} \mathcal{A}_{CP}(t) &= rac{rac{dN}{dt}(ar{B}^0 o J/\psi \, K^0_{
m S}) - rac{dN}{dt}(B^0 o J/\psi \, K^0_{
m S})}{rac{dN}{dt}(ar{B}^0 o J/\psi \, K^0_{
m S}) + rac{dN}{dt}(B^0 o J/\psi \, K^0_{
m S})} \ \mathcal{A}_{CP}(t) &= \sin(2eta)\sin(\Delta m_d t) \end{aligned}$$

To accomplish this we must:

- 1. Reconstruct signal $B^0/ar{B}^0 o J/\psi\,K^0_{
 m S}$
- 2. Measure proper decay time t
- **3.** Flavor tag: Produced B^0 ($\overline{b}d$) or \overline{B}^0 ($b\overline{d}$)?

 $\frac{B^0 - \bar{B}^0 \text{ flavor oscillations } (\Delta m_d) \text{ also need tag}}{\implies} \text{ use these measurements to understand tags}$

Quantify tags with efficiency ϵ and Dilution D

 ϵ = fraction of candidates with tag

 $D = 2 \cdot \mathcal{P} - 1$ ($\mathcal{P} = \text{prob. of correct tag}$)

Overall tag effectiveness: ϵD^2 J. Kroll Aspen Winter Conf. on Particle Physics, 20 Jan 2000 **Overview of Analysis (2)**

Amplitude of CP asymmetry reduced by D:

 $\mathcal{A}_{CP}^{ ext{meas}}(t) = oldsymbol{D} \sin(2eta) \sin(\Delta m_d t)$

Error on \mathcal{A} depends on ϵD^2 :

$$\delta \mathcal{A} = \sqrt{rac{1 - D^2 \mathcal{A}^2}{\epsilon D^2 N}}$$

To measure B^0 - \overline{B}^0 flavor oscillations:

$$\mathcal{A}(t) = rac{N_{ ext{unmixed}}(t) - N_{ ext{mixed}}(t)}{N_{ ext{unmixed}}(t) + N_{ ext{mixed}}(t)} = D \cdot \cos(\Delta m t)$$

Flavor osc. amplitude also reduced by D

Use mixing to determine ϵ and D

<u>Note:</u> $\epsilon D^2 \sim 1\%$ or larger is respectable

First Measurement of $\sin(2\beta)$

CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 81, 5513 (1998)

Signal: 198 \pm 17 $B^0/\bar{B^0} \rightarrow J/\psi K_{
m S}^0$

Measure raw asymmetry with Same-side tag

Using $D = 0.166 \pm 0.018 (data) \pm 0.013 (MC)$

Find $\sin(2\beta) = 1.8 \pm 1.1 \text{ (stat)} \pm 0.3 \text{ (syst)}$ (Syst. includes dilution uncertainty)

Improved Measurement of $\sin(2\beta)$

Accepted for publication in PRD T. Affolder *et al.*, FERMILAB-Pub-99/225-E, hep-ex/9909003

Improve statistical power of first result

- 1. Add candidates not fully reconstructed in silicon vertex detector (SVX) doubles signal to ≈ 400 additional signal has larger $\sigma(t)$
- 2. Add two additional flavor tags: soft-lepton and jet-charge both are opposite-side tags used in B^0 mixing analysis calibrated using data: $B^- \to J/\psi K^-$ Multiple flavor tags \Longrightarrow use maximum \mathcal{L}

Include terms in likelihood for

- Possible detector biases
- prompt background: $par{p}
 ightarrow J/\psi X + ext{random } K^0_{ ext{S}}$
- long-lived background: $B
 ightarrow J/\psi X + ext{random } K^0_{ ext{S}}$

Signal: $B^0/ar{B}^0 o J/\psi \, K^0_{ m S}$

Add candidates not fully contained in SVX

- Candidates in SVX: $\sigma(t) \sim 60 \mu \text{m}$
- Not in SVX: $\sigma(t) \sim (300 900) \mu m$

Plots are normalized mass: ${(M(J/\psi K_{ m S}^0)-M(B^0))\over \sigma(M)}$

Mass resolution:

$$\sigma(M) \sim 10\,{
m MeV}/c^2$$

Total signal: 395 ± 31

J. Kroll

Add Opposite-side Flavor Tags

Add two flavor tags used in mixing analysis (F. Abe *et al.*, Phys. Rev. **D60** (1999) 072003, hep-ex/9903011)

Soft Lepton: identical algorithm $e: p_T > 1 \text{ GeV}/c; \mu: p_T > 2 \text{ GeV}/c$

Jet Charge: modified to increase efficiency

Calibrate with $B^{\pm} \rightarrow J/\psi K^{\pm}$ Signal: 998 \pm 51

Same kinematics as signal sample

J. Kroll

Summary of Flavor Tag Performance

1. Soft Lepton:

$$egin{aligned} e: & p_T > 1\,{
m GeV}/c;\,\mu: & p_T > 2\,{
m GeV}/c\ \epsilon &= (5.6\pm 1.8)\%\ D &= (62.5\pm 14.6)\%\ \epsilon D^2 &= (2.2\pm 1.2)\% \end{aligned}$$

2. Jet Charge:

IF soft lepton, do not use Jet Charge $\epsilon = (40.2 \pm 3.9)\%$ $D = (23.5 \pm 6.9)\%$ $\epsilon D^2 = (2.2 \pm 1.3)\%$

3. Same side pion:

$$\epsilon pprox 70\%$$

 $D = (16.6 \pm 2.2)\% \text{ in SVX}$
 $D = (17.4 \pm 3.6)\% \text{ not in SVX}$
 $\epsilon D^2 = (2.1 \pm 0.5)\%$

Combined Tagging efficiency $\epsilon D^2 = (6.3 \pm 1.7)\%$

80% of the candidates have a tag

Measurement of $\sin(2\beta)$

 $[\]sin 2\beta = 0.79 {+0.41 \atop -0.44}$ (stat. \oplus syst.)

(Time integrated: $\sin 2\beta = 0.71 \pm 0.63$)

J. Kroll

Systematics: $\sin(2\beta)$

Dominated by determination of Dilution from statistics of calibration sample

Source	Evaluated	$\delta \sin 2eta$	
tagging dilution &	in fit	0.16	
tagging efficiency	in fit		
Δm_d	in fit	negligible	
$ au_{B^0}$	in fit	negligible	
m_B	\mathbf{refit}	negligible	
trigger bias	external	negligible	
K_L^0 regeneration	external negligibl		

Let Δm_d float in fit

$$\sin 2eta = 0.88 {+0.44 \ -0.41} \ \Delta m_d = 0.68 \pm 0.17 \, {
m ps}^{-1}$$

Statistical error from $J/\psi K_{\rm S}^0$ sample size and tagging ϵD^2 (0.39) larger than systematics

This will continue to be the case in Run II: Signal and Calibration samples both increase

J. Kroll

Confidence Limits on $\sin(2\beta)$

Uncertainties \sim Gaussian

- Feldman-Cousins (Frequentist): $0 < \sin 2\beta < 1$ at 93% C.L.
- Bayesian (prior flat in $\sin 2\beta$): $0 < \sin 2\beta < 1$ at 95% C.L.
- If true value $\sin 2\beta = 0$ probability of observing $\sin 2\beta > 0.79$ is 3.6%

Limit in $\rho - \eta$ Plane

Fourfold ambiguity: two not shown
Solid lines are the 1σ bounds
Dashed lines are two solutions for β

Measurement of $\sin(2\beta)$

Data Subsets

Data Set	Tag	$\sin(2eta)$	+ error	- error
All	All	0.79	0.41	0.44
	same-side	2.03	0.84	0.77
	jet-charge	-0.31	0.81	0.85
	lepton	0.52	0.61	0.75
SVX	All	0.54	0.52	0.57
(precise t)	same-side	1.77	1.04	1.01
CTC	All	1.24	0.75	0.70

Combined χ^2 of 3 tags:

 $\chi^2 = 4.63$ for 2 d.o.f. (Probability=10%)

Check with $B^0 o J/\psi K^{*0}$

Check procedure by fitting for

- Amplitude \mathcal{A}
- mass difference $\cos(\Delta m_d)$

Results:

${\cal A} = 0.96 \pm 0.38$ $\Delta m_d = 0.40 \pm 0.18\,{ m ps}^{-1}$

Consistent with expectations

J. Kroll

 $B^0
ightarrow J/\psi K^{st 0} ext{ and } B^0_s
ightarrow J/\psi \phi$

Transversity analysis

Fit angular distribution for 3 complex amplitudes: $A_0, A_{\parallel}, A_{\perp}$

Yields CP composition A_{\perp} is parity-odd (L = 1) contribution

Is $B_s^0 \to J/\psi \phi$ a pure *CP* state?

Tests factorization hypothesis

Signals:

Aspen Winter Conf. on Particle Physics, 20 Jan 2000

Results on $B \to VV$

Observations:

 $B^0
ightarrow J/\psi K^{st 0}$:

non-zero phases imply factorization in question

$$B^0_s
ightarrow J/\psi \phi$$
:

J. Kroll

$$egin{aligned} |A_{\perp}|^2 &= 0.229 \pm 0.188 \, (ext{stat}) \pm 0.038 \, (ext{syst}) \ |A_{\perp}|^2 &= 0 \Longrightarrow ext{ pure } CP \, ext{ even} - ext{Run II} \end{aligned}$$

Rare B Decays

Limits on $B^0/B_s^0 \to \mu^+\mu^-$ (F. Abe et al., PRD 57, R3811 (1998))

- Allowed in SM, but 3 orders of magnitude below our current sensitivity
- Some SUSY models predict substantial enhancement

$$BR(B^{0} \to \mu^{+}\mu^{-}) < 8.6 \times 10^{-7} (95\% CL)$$
$$BR(B^{0}_{s} \to \mu^{+}\mu^{-}) < 2.6 \times 10^{-6} (95\% CL)$$

<u>Limits on $B^0/B_s^0 \to e^{\pm}\mu^{\mp}$ </u> (F. Abe et al., PRL **81**, 5742 (1998))

- Forbidden in SM
- Sensitive to new particles: Pati-Salam Leptoquarks

BR(
$$B^0 \to e^{\pm} \mu^{\mp}$$
) < 4.5 × 10⁻⁶ (95%CL)
BR($B_s^0 \to e^{\pm} \mu^{\mp}$) < 8.2 × 10⁻⁶ (95%CL)

Corresponding to

$$M_{\rm LQ}(B^0) > 20.4 \,{\rm TeV}/c^2 \,(95\%{\rm CL})$$

 $M_{\rm LQ}(B^0_s) > 19.3 \,{\rm TeV}/c^2 \,(95\%{\rm CL})$

Run II:

- Current limits not limited by background Limits should scale with luminosity
- \bullet Sensitive to $M_{\rm LQ}>30\,{\rm TeV}/c^2$

Nonresonant $B \to \mu \mu K$

Run I:

- Expect 0.5 Events in each channel from SM
- Comparable level of background

 ${
m BR}(B^+ o \mu^+ \mu^- K^+) < 5.2 imes 10^{-6} \ (90\% {
m CL}) \ {
m BR}(B^0 o \mu^+ \mu^- K^{*0}) < 4.0 imes 10^{-6} \ (90\% {
m CL})$

Run II:

J. Kroll

- Should see signal in Run II
- But statistics too low for new physics studies

Tevatron Run I B Physics Summary

Many Interesting and Important Results

- Measurement of Weak Decays
 - Precise species specific lifetimes
 - -B flavor oscillations and flavor tagging
 - -CP asymmetry and $\sin 2eta$
 - Discovery of B_c^-
 - Precise mass measurements
 - Rare decays
 - BFs and polarization studies
- Quantitative Test of Perturbative QCD

Many important results

Not covered in this talk

Preparation for the real thing: Run II

CDF Upgrade for Run II

New silicon tracking system

- SVX II: 5 Layer, 96 cm, $r \phi$ and r z
- ISL: 2 additional layers, covers $|\eta| < 2$

3D Vertex, \sim 2 more acceptance

New central drift chamber

Maintain Run I track eff. and resol.

New deadtimeless trigger

- Track trigger moved to Level 1
- Use silicon information at Level 2

Purely hadronic B trigger possible

Recently approved additions

- New inner layer of Si at r = 1.4 cm
- Time-of-Flight:
 - $2\sigma~K/\pi$ sep. for $p < 1.6\,{
 m GeV}/c$

D0 Upgrade for Run II

Superconducting Solenoid (B = 2 Tesla)

Central Fiber Tracker

- 8 superlayers of scintillating fibers
- full coverage in $|\eta| < 1.7$

Charged particle momentum measurement

Silicon Microstrip Tracker

- 6 barrels, each 4 layers, with $r \phi$ and r z
- 16 disks out to $|z| < 1.2 \,\mathrm{m}$

Tag B decays with displaced vertices

With improvements to muon system and trigger, and existing calorimeter, will be competitive for B physics Tevatron Run II *B* Physics

- \bullet Precise Measurement of $|V_{
 m td}/V_{
 m ts}|$
 - $-(\dagger) B_s^0 \bar{B}_s^0$ flavor oscillations (also $\Delta \Gamma_s / \Gamma_s$)
 - Radiative decays: *e. g.* $B^0_s \to K^{*0} \gamma$ vs. $B^0_s \to \phi \gamma$ (†)
- Observe CP Viol. in $B^0/\bar{B}^0 \to J/\psi K_{\rm S}^0$ Precise measurement of $\sin(2\beta)$
- Observe CP Viol. in $B^0/\bar{B}^0 \to \pi^+\pi^-$ Precise measurement of asymmetry $(\sin(2\alpha))$
- (†) Measure CP asym. in $B_s^0/\bar{B}_s^0 \to J/\psi \phi$ Large asymmetry is physics beyond SM
- Observe decay modes related to angle γ $B_s^0 \to D_s^{\pm} K^{\mp}(\dagger)$ and $B^+ \to \bar{D}^0 K^+$
- Rare Decays Observe $B^+ \rightarrow \mu^+ \mu^- K^+$, $B^0 \rightarrow \mu^+ \mu^- K^{*0}$, $B_s^0 \rightarrow \mu^+ \mu^- \phi$ (†)
- (†) Study B_c^+ meson and b baryons

(†) <u>Unique to Hadron Machines</u>

B_s^0 Flavor Oscillations in Run II

- Expected signal: 20000 $B_s^0 \rightarrow D_s^- \pi^+, D_s^- \pi^+ \pi^- \pi^+;$ $D_s^- \rightarrow \phi \pi^-, K^{*0}(892)K^-$ after trigger and selection
- Proper time resolution:
 - $\sigma_t = 0.060 \,\, \mathrm{ps} \oplus t \cdot \sigma_{p_T}/p_T \,\, \mathrm{(SVXII \,\, only)}$
 - $\sigma_t = 0.045 ~{
 m ps} \oplus t \cdot \sigma_{p_T}/p_T ~({
 m SVXII} {
 m with} {
 m L00})$
- Flavor tag effectiveness:
 - $\epsilon D^2 = 5.7\%$ (CDF Baseline detector)
 - $\epsilon D^2 = 11.3\%$ (with addition of TOF)
- Signal to Noise: $2:1 \rightarrow 1:2$ (used Run I data)

Sensitive to $x_s < 63$

Expectations for CP Modes

 $\sin 2eta \,\, {
m from}\,\, B^0/ar B^0 o J/\psi K^0_{
m S}$

- For 10K $B^0/\bar{B}^0 \to J/\psi K^0_{
 m S}$
- Calibrate tags with 40K $B^{\pm} \rightarrow J/\psi K^{\pm}$ and 20K $B^0 \rightarrow J/\psi K^{*0}$
- $\epsilon D^2 = 6.7\%$ (add 2.4% more with TOF)

 $\delta(\sin 2\beta) \approx 0.084$

Asymmetry in $B^0/\bar{B}^0 o \pi^+\pi^- \ (\sin(2lpha))$

- Signal: 8 400 to 15 200 (if BR = 1.0×10^{-5})
- If signal of 10K and $\epsilon D^2 = 9.1\%$

 $\delta {\cal A}(\pi^+\pi^-) \sim 0.09$

Modes related to $\sin(\gamma)$

- $B_s^0/\bar{B}_s^0
 ightarrow D_s^{\pm} K^{\mp}$ Signal: ~ 700
- $B^{\pm} \to K^{\pm} D^0_{CP}$ (direct CP)
- $B^- \to K^- D^0, D^0 \to K^+ \pi^-$ and $B^- \to K^- \overline{D}^0, \overline{D}^0 \to K^+ \pi^-$

Run II: Expected Limit in $\rho - \eta$ Plane

Run I value with proj. Run II error: $\sin(2\beta) = 0.79 \pm 0.084$

CP Violation in $B^0_s/ar{B}^0_s ightarrow J/\psi\phi$

- Small in the Standard Model Significant asymmetry unambiguous sign of new physics
- Expected signal: 6000 $B_s^0/\bar{B}_s^0 \to J/\psi\phi$
- Requires measurement of x_s
- Expected combined ϵD^2 for this sample: $\epsilon D^2 = 9.7\%$

Summary

Run I:

Important measurements of B hadron decay properties despite trigger restrictions.

Competitive with e^+e^- colliders.

Gained experience $(\sin 2\beta, B^0$ Flavor oscillations, rare decays) and developed tools (e.g.,flavor tags and trigger strategies) for Run II.

Run II:

Improved detectors increase scope of B Physics: e.g., hadronic B triggers and TOF for PID.

Precision on $\sin 2\beta$ competitive with *B* factories (and is complementary). CP asym. in B_s^0 decays and Δm_s unique to Hadron machines.

The Tevatron will play a crucial, unique role in our test of the CKM Matrix.

Other B Exp. at Hadron Coll.

<u>Near Term</u>

Hera-b (DESY)

- Wire targets in p halo
- $\sigma(b\bar{b})/\sigma({\rm inel})\sim 10^{-6}$
- lepton and high- p_T hadron trigger
- data taking beginning 2000 (now)

About 5 years from now

BTeV (Fermilab Tevatron)

- Two-arm spectrometer in colliding beam
- lepton and displaced track trigger at first level

LHC-b (CERN)

- one-arm spectrometer in colliding beam
- lepton and high- p_T hadron trigger at first level displaced track trigger at second level

A Time-of-Flight Detector for CDF

- 216 scintillator bars located just outside COT
 - -3m long
 - $-\operatorname{cross-section} \approx 4 \times 4 \mathrm{cm}^2$
 - read out on both ends with fine-mesh PMTs
- Expected time-of-flight resolution: 100ps
- Primary purpose: kaon identification for *B* hadron flavor determination

With 100ps resolution: 2σ separation of

- K and π for p < 1.6 GeV/c
- p and K for p < 2.7 GeV/c
- p and π for p < 3.2 GeV/c

TOF and dE/dx are complementary